1. The novel Mechanical Ventilator Milano for the COVID-19 pandemic, A. Abba et al., Physics of Fluids 33, 037122 (2021). DOI: 10.1063/5.004444.
  2. Sensitivity of future liquid argon dark matter search experiments to core-collapse supernova neutrinosThe DarkSide-20k collaboration, JCAP 03 (2021) 043. DOI: 10.1088/1475-7516/2021/03/043, e-Print: arXiv:2011.07819 [astro-ph.HE].
  3. SiPM-matrix readout of two-phase argon detectors using electroluminescence in the visible and near infrared rangeThe DarkSide-20k collaboration, Aalseth, C.E., Abdelhakim, S., Agnes, P. et al., Eur. Phys. J. C 81, 153 (2021). DOI: 10.1140/epjc/s10052-020-08801-2, e-Print: arXiv:2004.02024 [physics.ins-det].
  4. Separating 39Ar from 40Ar by cryogenic distillation with Aria for dark-matter searches, The DarkSide-20k Collaboration, P. Agnes et al.,  Eur. Phys. J. C 81, 359 (2021), DOI: 10.1140/epjc/s10052-021-09121-9, e-Print: arXiv:2101.08686 [physics.ins-det].
  5. The liquid-argon scintillation pulseshape in DEAP-3600, DEAP Collaboration, P. Adhikari et al., Eur. Phys. J. C (2020) 80:303, DOI: 10.1140/epjc/s10052-020-7789-x, e-Print: arXiv:2001.09855 [physics.ins-det].
  6. Design and construction of a new detector to measure ultra-low radioactive-isotope contamination of argonThe DarkSide-20k Collaboration, C.E. Aalseth et al. 2020 JINST 15 P02024 (corresponding author E. Sánchez García), February 2020, DOI: 10.1088/1748-0221/15/02/P02024, e-Print: arXiv:2001.08106 [astro-ph.IM].
  7. DArT, a detector for measuring the 39Ar depletion factorE. Sánchez García, 2020 JINST 15 C02044, LIDINE 2019 conference proceedings, February 2020, DOI: 10.1088/1748-0221/15/02/C02044, e-Print: arXiv:2001.08077 [physics.ins-det].
  8. AVOLAR. A high voltage generator for liquid argon time projection chambersL. Romero, J.M. Cela, E. Sánchez García, M. Daniel, M. de Prado, 2020 JINST 15 C03057, LIDINE 2019 conference proceedings, DOI: 10.1088/1748-0221/15/03/C03057, February 2020, e-Print: arXiv:2001.05268 [physics.ins-det].
  9. Neutron production induced by α-decay with Geant4E. Mendoza, D. Cano-Ott, P. Romojaro, V. Alcayne, P. García Abia, V. Pesudo, L. Romero, R. Santorelli, NIM-A 960 (2020) 163659, DOI: 10.1016/j.nima.2020.163659, February 2020, e-Print: arXiv:1906.03903 [hep-ph].
  10. Electromagnetic Backgrounds and Potassium-42 Activity in the DEAP-3600 Dark Matter DetectorDEAP Collaboration, R. Ajaj et al., Phys. Rev. D 100, 072009 (2019), e-Print: arXiv:1905.05811 [nucl-ex].
  11. Neutrino Physics with the PTOLEMY projectPTOLEMY Collaboration, M.G. Betti et al., JCAP 1907 (2019) 047, DOI: 10.1088/1475-7516/2019/07/047,  e-Print: arXiv:1902.05508 [astro-ph.IM].
  12. A Design for an Electromagnetic Filter for Precision Energy Measurements at the Tritium Endpoint, PTOLEMY Collaboration, M.G. Betti et al.Progress in Particle and Nuclear Physics Vol. 106 (2019) 120-131, DOI: 10.1016/j.ppnp.2019.02.004, e-Print: arXiv:1810.06703 [astro-ph.IM].
  13. PTOLEMY: A Proposal for Thermal Relic Detection of Massive Neutrinos and Directional Detection of MeV Dark MatterPTOLEMY Collaboration, E. Baracchini et al., submitted to the LNGS Scientific Committee on March 19th, 2018, e-Print: arXiv:1808.01892 [physics.ins-det].
  14. Second T=3/2 state in 9B and the isobaric multiplet mass equation, N. J. Mukwevho et al.,  Phys. Rev. C 98, 051302(R), Nov. 2018, DOI: 10.1103/PhysRevC.98.051302.
  15. Constraints on Sub-GeV Dark Matter-Electron Scattering from the DarkSide-50 Experiment, DarkSide Collaboration, P. Agnes et al., Phys. Rev. Lett. 121 (2018) no.11, 111303, FERMILAB-PUB-18-052-AD-AE-CD-E, DOI: 10.1103/PhysRevLett.121.111303, e-Print: arXiv:1802.06998 [astro-ph.CO].
  16. Low-Mass Dark Matter Search with the DarkSide-50 Experiment DarkSide Collaboration, P. Agnes et al., Phys. Rev. Lett. 121 (2018) no.8, 081307, FERMILAB-PUB-18-048-AE-E-PPD, DOI: 10.1103/PhysRevLett.121.081307, e-Print: arXiv:1802.06994 [astro-ph.HE].
  17. DarkSide-20k: A 20 Tonne Two-Phase LAr TPC for Direct Dark Matter Detection at LNGS, DarkSide Collaboration, Aalseth, C.E., Acerbi, F., Agnes, P. et al., Eur. Phys. J. Plus (2018) 133: 131. DOI: 10.1140/epjp/i2018-11973-4, e-Print: arXiv:1707.08145 [physics.ins-det].
  18. Impact of the positive ion current on large size neutrino detectors and delayed photon emission R. Santorelli et al., JINST 13 (2018) no.04, C04015, DOI: 10.1088/1748-0221/13/04/C04015. Conference C17-09-22 Proceedings, e-Print: arXiv:1712.07971 [physics.ins-det].
  19. Backgrounds and pulse shape discrimination in the ArDM liquid argon TPC ArDM Collaboration, J. Calvo et al., JCAP 12 (2018) 011, e-Print: arXiv:1712.01932 [physics.ins-det].
  20. Characterization of a CLYC detector for underground experimentsT. Martinez et al., NIM-A 906 (2018) 150-158, e-Print: arXiv:1710.02420 [physics.ins-det].
  21. Dynamics of the ions in Liquid Argon Detectors and electron signal quenchingL. Romero, R. Santorelli, B. Montes, Astropart. Phys. 92 (2017) 11-20. e-Print: arXiv:1609.08984 [physics.ins-det].
  22. Measurement of the attenuation length of argon scintillation light in the ArDM LAr TPC, ArDM Collaboration, Astropart. Phys. 97 (2018) 186-196 , e-Print: arXiv:1611.02481 [astro-ph.IM].
  23. The ArDM Liquid Argon Time Projection Chamber at the Canfranc Underground Laboratory: a ton-scale detector for Dark Matter SearchesArDM Collaboration, JCAP03 (2017) 003, e-Print: arXiv:1612.06375 [physics.ins-det].
  24. A Noble Gas Detector with Electroluminescence Readout based on an Array of APDsB. Bourguille et al., JINST 10 (2015) no.12, C12016.
  25. Status of ArDM-1t: First observations from operation with a full ton-scale liquid argon targetArDM Collaboration (2015), e-Print: arXiv:1505.02443 [physics.ins-det].
  26. Development and Characterization of a Multi-APD Xenon Electroluminescence TPCT. Lux et al.,JINST 10 no.03 (2015) P03008.
  27. ArDM: first results from underground commissioningArDM CollaborationJINST 8 (2013) C09005.